Skip to main content

Heart patch helps stem cells work magic

Posted 15th April, 2018

Watch

A young Sydney scientist has invented a body patch that breathes life into dead tissue following a stroke or heart attack, dramatically improving a patient’s chance of full recovery.

The Heart Research Institute (HRI) is behind the invention of an innovative bio-material patch that can be loaded with a patient’s stem cells and implanted on their damaged tissue to stimulate blood flow. The findings have been published in the journal Stem Cell Research & Therapy.

“In lab studies we’ve been able to show that stem cells grown on our specialist patch were able to live longer and do life-saving work when grafted onto dying tissue,” says Richard Tan, a PhD candidate in HRI’s Applied Materials Group led by Dr Steven Wise.

Heart disease, stroke and vascular conditions are a major cause of death and disability in Australia, affecting about 4.2 million people, according to AIHW statistics. In these conditions, known broadly as cardiovascular disease, the blood vessels are damaged, blocking vital blood supply to tissue. In the event of a stroke or heart attack, urgent action is needed to restore blood flow to save lives and minimise disability. However, effective therapies to do this are sadly lacking.

Stem cells – cells that can transform into any type of cell in the body – hold great promise in the treatment of heart failure and heart disease. However, stem cell therapies to date have been limited by the failure of injected cells to firmly graft onto damaged tissue following transplantation. “Stem cells have actually been used to treat heart attacks but cells don’t survive for long so effects are short-lived,” Mr Tan explains.

“If these results bear out in human trials then we have a hugely exciting new stem cell therapy that will transform the treatment landscape for stroke and heart attacks.”

As an alternative to injected cells, scientists at HRI have been investigating growing the cells on a compatible bio-material patch which is then implanted in the body. They used endothelial stem cells, which are known to stimulate blood vessel growth and wound healing naturally in the human body.

Microscope image of bio-material patch seeded with stem cells. Red stain indicates stem cell wall; blue indicates cell nucleus. Taken by Richard Tan, HRI Applied Materials Group.

“In our lab studies we found that these stem cells seeded onto our patch lived significantly longer in the body compared to stem cells that were directly injected without our patch,” says Mr Tan. “It seems that by creating a platform for them to grow on, as sort of an artificial structural support system, they are able to establish themselves better within injured tissue and have greater chances to survive.”

Donate today

Breaking ground. Healing hearts.

Every donation to HRI supports world-class research that will give people affected by cardiovascular disease more time with the ones they love.

Other ways to give