Applied Materials.

Our mission is to develop the next generation of bioactive materials – materials that can bond to living tissues –

and provide better treatment options for those with cardiovascular disease.

Our group works with exciting new classes of biomaterials including naturally derived proteins and polymers and the latest in synthetically produced plasma surfaces and products. We aim to engineer and optimise these materials to be therapeutically useful in the treatment of vascular disease and more broadly in tissue repair.

What impact will this research have?

The materials currently available for vascular repair are fundamentally incompatible with the tissues they seek to repair. Metal alloys like stainless steel, and the same plastics used in Goretex jackets and drinking straws are in wide use, relying on technology that has not evolved considerably for several decades. Discovery of new materials that could be used clinically would have a significant impact on the lives of patients.

Current projects and goals

Our team is studying a range of new materials and approaches with the aim of developing the next generation of biomedical materials.

Developing next generation silk vascular biomaterials

Silk fibroin is a versatile natural polymer with remarkable mechanical properties. Widely used as a suture material, purified silk is extremely well tolerated in the body. The biodegradability of silk can also be controlled during scaffold manufacture, making it a widely used biomaterial. We recently demonstrated that silk can be blended with other natural polymers to generate highly functional tissue replacements. We aim to further develop novel biomaterial platforms that mimic the native vasculature, functionalising silk materials with unique extracellular matrix proteins to control and guide cell interactions. This project is in collaboration with key national and international colleagues: Dr Jelena Rnjak-Kovacina (Graduate School of Biomedical Engineering, UNSW) and Prof Cay Kielty (University Manchester).

Anti-inflammation biomaterials 

The development of more effective biomaterials for tissue repair aims to minimise the foreign body response by modulating immune cell function. We have identified a vaccine virus protein called 35K as a potential candidate for reducing implant inflammation. 35K has well-characterised anti-inflammatory properties, inhibiting nearly all of the CC Chemokine class. It has been shown to inhibit macrophage recruitment and atherosclerotic plaque formation in rabbits and apolipoprotein E-knockout mice. This project aims to develop novel biomaterials that are broadly applicable to tissue replacement, including in the vasculature. By focusing on the anti-inflammatory properties of 35K, we aim to deliver functionalised materials which are better tolerated in vivo. This project is in collaboration with Dr Christina Bursill (HRI).

A new class of self-assembling nanomaterials 

Realistic in vitro environments are critical to underpin the next generation of biomedical research and drug development. We aim to develop new nanostructured three-dimensional (3D) microenvironments that mimic the biochemical, mechanical and spatial cues that govern cell behaviour in the body. Under appropriate conditions β-peptides self-assemble into fibres that resemble those of the natural extracellular matrix. We will deliver these unique fibrous surfaces to the body by linking them to appropriate materials using plasma activation technology. Ultimately the outcomes will mean new biomedical implants that better integrate into the body; structures that enable efficient expansion of cell populations in vitro and the delivery of the cells into patients for cell therapy. The project is in collaboration with Prof Mibel Aguilar (Monash) and Prof Marcela Bilek (School of Physics, University of Sydney).

Dr Steven Wise
Research group led by:
Research covers areas of:
Latest news

Easy School Lunch ideas for kids (..and big kids!)

Making kid's school lunches takes a good 20-minute chunk out of your morning routine. And some days it’s hard work. Dealing with fussiness. Ensuring that it’s healthy. Making sure you are giving them the right amount of food. Making sure that it stays fresh because it can’t be re-heated and it’s not stored in a fridge. Phew! Coming up with ideas to keep your kids interested and well-nourished is a huge challenge! Here are some tips for creating a nourishing, yet uncomplicated school lunch box.

Help fund vital research into heart disease

Select your donation details
You can choose between donating once or monthly.
Please enter or select your donation amount.
Invest in a future free from cardiovascular disease.
Your donation will allow great science to flourish.
All donations are tax deductible.